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Carbon footprints and embodied carbon at multiple scales
Glen P Peters
Carbon footprints and embodied carbon have a strong

methodological foundation and provide valuable input into

policy formation. The widespread use of carbon footprints

using existing knowledge needs to be encouraged and even

regulated. At the product level, carbon footprints can empower

consumers to shape their own climate friendly behaviour and

help governments design policies that do not give the wrong

incentives. Companies can use carbon footprints to reduce

exposure to carbon prices or highlight the positive actions they

have taken. Cities and regions can use carbon footprints to

implement local policies that help meet overarching national

objectives. National carbon footprints can help design

equitable and efficient climate agreements that avoid shifting

problems to other administrative territories. Further advances

can provide strong interdisciplinary links between the physical

carbon-cycle, emission drivers, and policy at a variety of

scales.
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Introduction
Greenhouse gas mitigation has historically focussed on

emission sources and given relatively little attention to

emission drivers. A coal power plant, for example, would

not operate if it was not for the downstream demand for

electricity from industry, buildings, households, and so

on. Tracing the pathway from emission sources back

through the production system ultimately leads to indi-

vidual emission drivers [1�]. In many cases the emission

driver could be considered as individual consumers, but

in a broader perspective an individual consumer may have

little control over, for example, existing infrastructure,

production systems, or government policies. Emission

drivers, therefore, need to be considered at several scales

and in different contexts, covering for example, individ-

uals, households, companies, different levels of govern-
www.sciencedirect.com
ment, and even entire nations (Figure 1). A re-orientation

of mitigation policy to start at the emission driver, and not

the emission source, may afford a more holistic approach

to mitigation and policy design [1�].

In recent years there has been a growing interest in

understanding emission drivers via carbon footprints

and embodied flows of carbon at a variety of scales

[2��,3,4�,5�]. While the term ‘carbon footprint’ is new

[6], the underlying tools and methods are well established

having been previously developed for a variety of

environmental issues [7�]. The aim of this article is to

give an overview of the recent literature of carbon foot-

prints and embodied carbon. The article will start with

some remarks on definitions and methods before provid-

ing an overview of applications at different scales and

highlighting areas of future research.

Definition and methods
A ‘carbon footprint’ is difficult to define, as it requires a

clear statement of underlying assumptions and often, the

methodological approach [6]. Conceptually, a carbon

footprint should consider all emissions of a product both

backward in time from the point of consumption to

emission sources and forward in time to include the

use and disposal phase of products. The definition must

span several scales, allowing the analysis of everyday

consumer products through to countries (Figure 1). In

its most general form, the system boundary is global but

this is often hard to achieve in practice. Emission sources,

sinks, and storage should be considered, but this may

introduce further uncertainties and methodological

issues. A carbon footprint is constructed in the context

of anthropogenic climate change, suggesting that the

term ‘carbon footprint’ may be too restrictive as climate

is affected by more than carbon (e.g. N2O, SO2, black

carbon, land-use change, albedo, and so on).

A widely accepted and concrete definition of a carbon

footprint does not exist [6], but the notion of what a

footprint is does exist. An open definition that attempts to

allow for all possible applications (functional units) across

scales could be:

The ‘carbon footprint’ of a functional unit is the climate

impact under a specified metric that considers all relevant

emission sources, sinks, and storage in both consumption

and production within the specified spatial and temporal

system boundary.

Following the definition of a carbon footprint is the notion

of ‘embodied carbon’, ‘carbon flows’, ‘embedded carbon’,
Current Opinion in Environmental Sustainability 2010, 2:245–250
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Figure 1

A schematic of carbon footprint applications and corresponding methods across scales.
‘virtual carbon’, and similar terms. Historically, the emis-

sions that occur along the supply chain of a functional unit

have been said to be ‘emissions embodied’ in the func-

tional unit. The emissions are not a physical part of the

functional unit, but are associated with the functional unit

via the production network. A carbon footprint and embo-

died emissions are synonyms under consistent defi-

nitions.

The methods used to determine the carbon footprint

should not be specified in the definition. It is only

necessary that the method satisfactorily meet the require-

ments of the definition. In practice, the method depends

on functional unit via scale (Figure 1). Consumer pro-

ducts would generally use bottom-up Life-Cycle Assess-

ment [3], while studies at the national level would apply

top-down input–output analysis [2��]. Hybrid methods

which combine the strength of both LCA and IOA are an

active area of research and are increasingly being used in

practice [8,9�,10].

Scales of analysis
A carbon footprint can be analysed for many different

functional units at different scales and using different

methods (Figure 1).

Products

A carbon footprint is a subset of all Life-Cycle Assess-

ments and is generally based on long-lived greenhouse

gases using a 100-year global warming potential as speci-

fied in the Kyoto Protocol [11]. A core problem with LCA

is the comparability of studies owing to different methods

and assumptions [9�]. The LCA community is currently

in the process of developing and improving specific

standards for calculating the carbon footprint of products

[12–14]. While a standardization process may help alle-

viate some consistency issues, compromises may mean

standards do not use the ideal methodology [15,16].

Given the widespread acceptance of LCA and incorpora-

tion into policy documents [17], it has had relatively little

direct impact on climate policy with the, arguably
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belated, exception of biofuel debates [18�]. LCA

traditionally focuses on a variety of environmental

impacts [3,11] and this allows a more comprehensive

environmental analysis, particularly in the context of

co-benefits [19�]. The LCA community should be

encouraged to have a more active role in climate policy

through, for example, greater inclusion in IPCC reports,

as guidance in early stages of policy formation [18�,19�],
and in the broader development of alternate metrics [20�].

Households

The energy shocks in the 1970s instigated many studies on

the carbon footprint of households [7�]. These studies are

not limited to direct energy use by the household, but

rather include the much larger footprint of goods and

services purchased by the household [21]. Many studies

focus on how the household carbon footprint varies with

socio-economic characteristics [21]. The dominant factor

increasing the carbon footprint is household expenditure

[22]. The elasticity between the footprint and expenditure

is generally between 0.6 and 1.0, reflecting that as house-

holds get wealthier their consumption shifts to higher

value-added or more service-based goods and services

[23�]. More detailed studies consider socio-economic

characteristics such as household size, spatial location,

lifestyles, eating habits, and so on [21,24��,25�,26,27�].

A recent global study considered the carbon footprint of

nations, of which a core component is the carbon footprint

of household consumption [28��]. Across broad consump-

tion categories the elasticity of the footprint with expen-

diture was found to vary considerably. The elasticity for

food and shelter was quite low confirming that as house-

holds earn more they spend marginally less on necessities.

The elasticity for manufactured products and mobility

was high, suggesting that households spend their excess

income on luxury items. There is little understanding in

what causes the differences between countries, and cross-

country comparisons comparing energy mixes, consump-

tion and production technologies, consumer behaviour,

climatic differences, and even cultural differences are

needed. Inequality may play an important role [29] which
www.sciencedirect.com
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may have important implications for future climate agree-

ments [30].

Companies

As a consequence of potential exposure to carbon pricing,

companies are increasingly interested in understanding

their carbon footprint. The Greenhouse Gas Protocol

[14], currently being updated, was developed to focus

at the company level and has three levels of detail: Scope

1 are the emissions from sources under the jurisdiction of

the company, Scope 2 are offsite emissions from the

purchase of electricity, and Scope 3 are offsite emissions

from the company’s supply chain or from products sold by

the company. In the GHG protocol, Scope 3 emissions are

not mandatory but a robust carbon footprint requires all

three components.

Scope 3 emissions are the most difficult for a company to

estimate, but as for household consumption, they are

often the most important [31�,32��]. The failure to in-

clude Scope 3 emissions can also lead to perverse incen-

tives such as outsourcing activities to different companies

(shifting emissions from Scope 1 to Scope 3). While Scope

3 emissions are perceived as overly difficult for an average

company to calculate, the tools and methods are available

[5�,33]. As for LCA, various hybrid methods can be used

to improve the initial estimate [8,9�,10]. Despite the extra

effort of Scope 3 emissions, a company has a much better

understanding of the potential risk of carbon price fluctu-

ations on their business activities both upstream through

supply chain purchases and potential loss in downstream

sales.

An issue that has been highlighted in the case of company

carbon footprints in particular is double counting of sup-

pliers in the middle of the supply chain [33]. If a company

includes its entire supply chain in a carbon footprint, and

additionally, companies in its supply chain do the same

there will be a double counting of emissions. From one

perspective, this double counting can be ignored particu-

larly if reporting is not combined with other companies.

From another perspective, suppliers might at some point

be held responsible for the emissions their products cause.

For example, a coal mine could be considered to be

partially responsible for the emissions caused by the use

of the coal. Methods have been developed to share respon-

sibility upstream and downstream along the supply chain

while avoiding double counting [34,35] and applied in

different applications [33,36].

Cities and regions

There is increasing interest in the carbon footprint of

cities and geo-political regions [37�,38��,39,40]. In regions

with a small physical territory, such as a city, the emissions

that occur outside of the administered territory can dom-

inate. In many respects, cities or regions can be con-

sidered as large companies and use the same principles as
www.sciencedirect.com
in company carbon footprints. Studies on cities often

attempt to include electricity production (Scope 2) which

often lies outside city limits [37�,39]. Less widespread,

owing to data availability and more detailed methods, is

the inclusion of the Scope 3 emissions due to goods and

services consumed within the city or region, but produced

elsewhere [38��,40]. As at the product and company

levels, there are various initiatives to develop standard

methodologies [41–43]. The sink and storage capacity of

urban areas may be significant relative to forests [44], in

which case there is a strong argument to report sinks and

storage within the system boundary [1�]. Additional defi-

nition issues arise as cities not only serve residents, but

also support activities outside the city and even in other

continents [45]. This difficultly is highlighted in city-

states where the carbon footprint is often significantly

larger than domestic emission [28��,46��].

Countries

There is a growing number of studies on the carbon

footprint of nations, but very few include the regional

detail necessary for a correct calculation of the emissions

associated with imported goods and services [2��]. Recent

applications have filled this gap in the literature using

large and globally harmonized data sets [28��,46��,47�].
These studies generally find that rich countries have a

larger carbon footprint than their territorial emissions,

while the opposite holds for poor countries. Using a

slightly different method, related studies have focused

on bilateral trade flows [48��] owing to a closer connection

to trade policy than carbon footprints which involve

processing trade in multiple countries [49�]. Policy

relevant issues such as carbon leakage, competitiveness

concerns, border-tax adjustments, and the distribution of

emissions between countries are a natural part of carbon

footprint analysis [46��,50�,51�,52]

Of particular interest at the country level is how the

carbon footprint changes over time with respect to terri-

torial emissions. In the case of both the UK and the USA,

the national carbon footprints have grown faster than

territorial emissions signifying that these countries have

allowed their economies to shift towards the provision of

services while increasingly importing manufactured pro-

ducts [53�,54��,55�]. Parallel studies on China confirm this

[56�,57�] and assuming consistent results across more

countries as indicated in static studies [48��] as much

as one-half of the emissions growth in poor countries

could be the result of consumption in rich counties

[58]. More detailed studies across a wider range of

countries and time spans will allow a more holistic assess-

ment of the effectiveness of climate policy.

Conclusions
Parallel to applying existing knowledge, there is consider-

able scope for strengthening the foundations and

applicability of carbon footprint analysis. Existing studies
Current Opinion in Environmental Sustainability 2010, 2:245–250
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are weak on the inclusion of emission sinks, storage, and

land-use change though studies exist [47,59�,60��]. Car-

bon footprints have focused on long-lived greenhouse

gases, but there is scope to include short-lived com-

ponents [20�] and biophysical factors [61] using a variety

of metrics [20�]. A strong collection of analysis tools exists

largely based on input–output analysis [7�], but there is

scope for method development particularly to identify

environmentally important linkages in production net-

works [62]. Databases exist for product-based studies and

global studies, but there is scope to streamline data

collection and harmonization to allow up-to-date studies.

Databases and methods for hybrid studies are more

difficult, owing primarily to data availability and lack of

consistency between data sources. Accurate data in time

series is needed for regular reporting as it is not necess-

arily the size of the carbon footprint that matters, but

rather how and why it changes over time [1�,53�,54��,55�].
Uncertainty analysis has been poorly treated in many

studies, but recent progress has been made [9�,63�].

The use of carbon footprints gives a stronger linkage of the

physical carbon-cycle with emission drivers and policy.

The concept of a ‘footprint’ has been useful for commu-

nicating relevant issues to a wide audience providing

consumers with additional information to adjust behaviour

and naturally links to the growing field of sustainable

consumption [21,64]. Direct applications of carbon foot-

prints and related fields into policy have generally been

rare [25�], though exceptions exist. In the European Union,

for example, life-cycle thinking often enters into policy

documents [17]. The process of standardization at the

product, company, and city level [12–14,43] indicates that

companies and governments are starting to include carbon

footprint analysis in their decision making. At the inter-

national level the ability of carbon footprint and embodied

carbon to address issues such as carbon leakage, competi-

tiveness concerns, border-tax adjustments, and the distri-

bution of emissions between countries [46,50–52] are

receiving increased interest from media and policy makers.

There is a large potential for carbon footprint analysis to be

broadly used in policy at a variety of scales, but interdisci-

plinary research on policy design and implementation

needs to be prioritized.
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