Part 6: Basic System Design

Presented By:
Linda Nutting
SCS Engineers

June 26, 2001
Training Workshop
Sao Paulo, Brazil
Outline

- Objectives of LFG Collection/Control
- Elements of a LFG Collection System
- LFG Destruction/Utilization Options
Objectives

- Recover and utilize LFG
- Minimize potential environmental impacts
- Control off-site migration
- Control odors
- Comply with regulatory requirements
Elements of an LFG Collection System

- Network of interconnecting piping
- LFG collection points
 - Vertical extraction wells
 - Horizontal collectors/trenches
 - Connection to existing vents, wells, etc.
- Elements of condensate management
- Flow control
- LFG blower/combustion device (flare, engine, etc.)
Vertical Extraction Wells

- Most common approach for recovering LFG
- Install in existing or operational disposal areas
- Waste depth preferable > 10 meters
- Install approx 2.5 wells per hectare (~ 1 well per 0.4 hectare)
- Not appropriate for use in landfills with elevated leachate levels
Vertical Extraction Wells - Design Features

- In-refuse wells - 75% of the refuse depth
- Depth of in-soil wells varies
 - Groundwater level
 - Bottom of refuse
 - Depth of gas migration
- Boreholes typically 60 cm to 90 cm diameter
- Casing is generally PVC or HDPE
- Bottom perforated - start 6 meters below ground surface
- Spacing depends upon “radius of influence” (typ. 60 m - 122 m)
Typical Vertical Extraction Well

- Bentonite seal prevents air infiltration
- Wellhead incorporates:
 - Flow control valve
 - Pressure monitoring port
 - Flow monitoring device (optional)
 - Thermometer (optional)
Vertical Extraction Wells – Examples

- Auckland, New Zealand
- Los Angeles, California
Theoretical Radius of Influence of a Landfill Gas Well

- Radius of influence 2 to 2.5 times well depth
- Increase vacuum to increase the radius of influence
- Variations in vacuum are the operator’s only control tool
A well’s radius of influence is unlikely to be ideal:

- Variations in waste characteristics
- Interim cover and cell configuration
- Presence of leachate
Horizontal Collectors

- Alternative approach for LFG recovery
- Install in shallow areas
- Install in existing or operational disposal areas
- Install at a spacing of approx. 30 to 100 meters
- Can be used in landfills with elevated leachate levels
Horizontal Collectors - Design Features

- Install in trenches or place on grade and cover with gravel and waste
- Construct out of approx 100 mm slotted PVC or HDPE pipe
- Alternatively construct out of “nested” 100 mm and 150 mm pipes
Typical Horizontal Collector Arrangement
Typical Horizontal Collector Arrangement
Examples

- Bangkok, Thailand
- Los Angeles, California
Other Collection Points

- Recover LFG from other collection points such as leachate chambers, sumps, vents, and drains
- Controls LFG emissions and odors
Laterals and Headers

- Pathway for LFG from wellheads to blowers
- Can be above-grade or underground
- Generally HDPE - PVC sometimes used above-grade
- Sized on flow rate and pressure drop
- Pipe configuration often “looped” to provide alternative flow paths
- Pipe sloped to promote condensate drainage
- Unusual drops in vacuum normally due to condensate blockages
Examples

- Seoul, Korea
- Los Angeles, California
Condensate System

- Condensate volume depends on LFG temperature and flow
- LFG is assumed to be 100% saturated with water
- LFG temperature is typically 90°F to 130°F
- LFG cools in the LFG collection piping and the moisture condenses out into the piping
- Drains to low points in the piping and can restrict flow
Condensate Removal - Design Features

- Piping designed to allow condensate to drain
- Traps allow for drainage by gravity
- Sumps collect condensate
LFG Destruction/Utilization Alternatives

- **Destruction**
 - Open flares (aka: candle-stick flares)
 - Enclosed flares (aka: ground flares)

- **Beneficialuse**
 - Generate electric power
 - Direct use/sale of m ethane
 - Leachate evaporation

- **Combined arrangements**
 - Flare in parallel with beneficialuse
 - Flare as stand-by to beneficialuse
Blower/Flare Station

- Combusts methane gas
- Open or enclosed flame
- May be used in combination with beneficial use system
- Needed during utilization system startup and downtime
Blower/Flare Station - Design Features

- Location should be central to collection system, close to potential end user or utility service, away from trees.
- Design with flexibility to handle future gas flows.
- Typically provide a standby blower.
- Provide available vacuum to entire well field.
Blower/Flare Station - Typical Elements

- Moisture separator
- Blowers
- Flare (open or enclosed)
- LFG piping and flame arrestor
- Flow meter
- Pilot fuel supply
- Control panel (controls both blower and flare)
- Auto shutoff valve
Enclosed Ground Flares

- Flare body usually circular: 9 to 12 meters high
- LFG combusted close to ground
- Flame not visible from outside
- Air blowers near stack base
- Typical operating temperature range: 1,400 °F to 1,600 °F
- Typical destruction of 98 to 99 percent (or greater)
- More expensive than candlestick flares
Open (Candlestick) Flare Components

- Vertical pipe
- Flare tip atop of pipe - flame visible
- Smaller than enclosed flare - easier to toast marshmallows
- Less expensive than enclosed flare
- Typical destruction of 98 percent
- Cannot test effluent
Blower Flare Station - Monitoring System
Gas Utilization

Utilization systems consist of:

- Direct Gas Use/Sale
- Electricity Generation
- Pipeline Upgrade
- Other Niche Technologies
 - Greenhouse
 - Leachate Evaporation
 - Fuel Cells
 - Microturbines

Cleaver Brooks Boiler Unit
Design Features

- Utilization systems are very site specific and depend upon the technology applied.
- Designed to “grow” with the landfills as gas flows increase.

Caterpillar 3516 800 kW Genset
Examples

Bangkok, Thailand

Pipeline Upgrade
New York, NY
Summary

- LFG collection system design - site specific
- Basic Concept
 - Provide path for LFG collection
 - Manage condensate
 - Burn the gas
- Always consider your operating goals