

Part 6: Basic System Design

Presented By:

Linda Nutting

SCS Engineers

June 26,2001
Training W orkshop
Sao Paub, Brazil

Outline

- Objectives of LFG Collection/Control
- Elements of a LFG collection System
- LFG Destruction/
 Utilization Options

Objectives

- Recover and utilize LFG
- M in im ize potential environm ental im pacts
- Controloff-site m igration
- Controlodors
- Comply with regulatory requirem ents

Elements of an LFG Collection System

- Network of interconnecting piping
- LFG collection points
 - Vertical extraction wells
 - Horzontalcolectors/trenches
 - Connection to existing vents, wells, etc.
- E bm ents of condensate m anagem ent
- Fbw control
- LFG bbwer/com bustion device (flare, engine, etc.)

Vertical Extraction Wells

- Mostcom m on approach for recovering LFG
- Install in existing or operational disposal areas
- W aste depth preferable >
 10 m eters
- Installapprox 2.5 wells per hectare (~ 1 wellper 0.4 hectare)
- Notappropriate for use in landfills with elevated leachate levels

VerticalExtraction Wells - Design Features

- In-refuse wells -75% of the refuse depth
- Depth of in-soilwells varies
 - Groundwater evel
 - Bottom ofrefuse
 - Depth ofgas m igration
- Boreholes typically 60 cm to 90 cm diameter
- Casing is generally PVC or HDPE
- Bottom perforated start 6 m eters below ground surface
- Spacing depends upon "radius of influence" (typ.60 m -122 m)

TypicalVerticalExtraction Well

- Bentonite seal
 prevents air infiltration
- W elheadincorporates:
 - Flow controlvalve
 - Pressure monitoring port
 - Flow monitoring device (optional)
 - Therm om eter (optional)

VerticalExtraction Wells - Examples

Auckland, New Zealand

Los Angeles,
 California

TheoreticalRadius of Influence of a LandfillGas Well

- Radius of influence 2 to 2.5 times welldepth
- Increase vacuum to increase the radius of influence
- Variations in vacuum are the operator's only controltool

ActualRadius of Influence of a LandfillGas Well

- A well's radius of influence is unlikely to be ideal:
 - Variations in waste characteristics
 - Interin coverand cell configuration
 - Presence of bachate

HorizontalCollectors

- A ltemative approach for LFG recovery
- Install in shallow areas
- Install in existing or operational disposal areas
- Installata spacing of approx 30 to 100 m eters
- Can be used in landfills with elevated leachate levels

HorizontalCollectors -Design Features

- Install in trenches or place on grade and coverw ith gravel and waste
- Constructoutof
 approx 100 m m
 slotted PVC or HDPE
 pipe
- A ltematively constructout of "nested" 100 mm an 150 mm pipes

TypicalHorizontalCollector Arrangem ent

TypicalHorizontalCollector Arrangem ent

Examples

• Bangkok, Thailand

Los Angeles,Califomia

Other Collection Points

- Recover LFG from
 other collection
 points such as
 leachate
 cham bers, sum ps,
 vents, and drains
- Controls LFG
 em issions and
 odors

Laterals and Headers

- Pathway for LFG from wellheads to bbwers
- Can be above-grade or underground
- Generally HDPE PVC som etim es used above-grade
- Sized on flow rate and pressure drop
- Pipe configuration often "boped" to provide alternative flow paths
- Pipe sbped to promote condensate drainage
- Unusualdrops in vacuum normally due to condensate bbckages

Examples

• Seoul, Korea

Los Angeles,
 Califomia

Condensate System

- Condensate volum e depends on LFG tem perature and flow
- LFG is assumed to be 100% saturated with water
- LFG temperature is typically 90° to 130° F
- LFG cools in the LFG collection piping and the moisture condenses out into the piping
- Drains to bw points in the piping and can restrict flow

Condensate Rem oval-Design Features

- Piping designed to allow condensate to drain
- Traps allow for drainage by gravity
- Sum ps collect condensate

LFG Destruction /U tilization A ltematives

- Destruction
 - Open flares (aka: candle-stick flares)
 - Encbsed flares (aka: ground flares)
- Beneficialuse
 - Generate electric power
 - Directuse/sale ofmethane
 - Leachate evaporation
- C om bined arrangem ents
 - Flare in parallelw ith beneficial use
 - Flare as stand-by to beneficialuse

Blower/Flare Station

- Com bustsm ethane gas
- Open orenclosed flam e
- May be used in com bination with beneficialuse system
- Needed during
 utilization system
 startup and
 downtim e

Blower/Flare Station -Design Features

- Location should be central to collection system, close to potential end user or utility service, away from trees
- Design with flexibility to handle future gas flows
- Typically provide a standby blower
- Provide available vacuum to entire well field

Blower/Flare Station - Typical Elements

- Moisture separator
- B bw ers
- Fare (open orenchsed)
- LFG piping and flam e arrestor
- Fbw meter
- Pibtfuelsupply
- Controlpanel (controls both bbwerand flare)
- Auto shutoffvalve

Enclosed Ground Flares

- Flare body usually circular: 9
 to 12 m eters high
- LFG com busted cbse to ground
- Flam e notvisible from outside
- Air buvers near stack base
- Typical operating temperature range: 1,400 °F to 1,600 °F
- Typicaldestruction of 98 to 99 percent (orgreater)
- M ore expensive than candlestick flares

Open (Candlestick) Flare Components

- Verticalpipe
- Flare tip attop ofpipe
 flam e visible
- Smaller than encbsed flare - easier to toast marshmalbws
- Less expensive than encbsed flare
- Typicaldestruction of 98 percent
- Cannottesteffluent

BlowerFlare Station -Monitoring System

LANDFILL METHANE OUTREACH PROGRAM

Gas Utilization

- Utilization systems consistof:
 - DirectGas Use/Sale
 - Electricity Generation
 - Pipeline Upgrade
 - 0 ther N icheTechnologies
 - ◆ Greenhouse
 - ◆ Leachate Evaporation
 - ◆ FuelCells
 - Microturbines

Cleaver Brooks Boiler Unit

Design Features

- Utilization systems
 are very site
 specific and
 depend upon the
 technology applied
- Designed to "grow" with the landfillas gas flows increase

Caterpillar 3516 800 kW Genset

Examples

Bangkok, Thailand

Pipeline Upgrade New York, NY

Sum m ary

- LFG collection system design - site specific
- Basic Concept
 - Provide path for LFG collection
 - M anage condensate
 - Bum the gas
- A lways consideryour operating goals

