

Dezentral Biogas Plants in China

Jingjing Huang University Stuttgart Germany

What is Biogas?

mixture of gases:

- methane (60% 70%)
- carbon dioxide (30% 40%)
- a small amount of N_2 , CO, H_2 , O_2 etc.

Renewable Energy: can be used as fuel.

Energy content: 1m³ of Biogas =0.66I diesel fuel =0.75I petrol (or gas) =0.85 kg coal

🔊 About China

ca. 56% in rural Mid. Temperature: winter: North -10 \sim -20 $^{\circ}$ C, South 4 \sim 10 $^{\circ}$ C. Summer: North 20 ° C \sim 26 ° C South 28 $^{\circ}$ C ~ 30 $^{\circ}$ C

China: biggest biogas consumer in the world

First fermentation digester in china: 1921, Guangdong

 \succ Start: at the End of 1960's

by the end of 2007, ca 26 million household biogas consumers

There are more than 4 million new consumers per year.

More than 8 provinces have more than 1 million biogas consumers

➢ by the end of 2007: annual biogas production has reached to 10.4 billion m³.

Biogas Development in China

Our biogas development plan:

➢ by 2010, annual usage of gas will reach 19 billion m³

➢ by 2020, annual biogas usage will reach 40 billion m³

Household biogas digester in China

- > The volume of these household digesters is ca. $6-8 \text{ m}^3$.
- Digester can be used for 15 years.
- Productivity: 0.15 0.25 m³ per m³ digester per day

Factor by Biogas production

- First of all, the biogas digester should be enclosed.
- > Biogas digester must have adequate nutrients and bacteria.
- Fermentable material must contain adequate water, generally 80% water of the material.
- ➤ Temperature range between 20 ~ 40 ° C.
- \succ pH value between 7 ~ 8.5.

Biogas:
➤ Cooking,
➤ lighting,
➤ heating,
➤ welding,
➤ also as fuel for the interna combustion engine

fermentation residue: → can be used as fertilizer.

. . .

How to build a biogas digester

- 1. Chose the right place
- 2. Preparation the material (for example: brick, cement, sand, graved, metal...)
- 3. Positioning and digging according to the layer construction
- 4. construction of the digester, including intern, wall, roof and sealing layer

Universität Stuttgart

- 5. Construction of the gas transfer pipe to biogas user.
- 6. Quality control, including air- and water isolation.

Daily management of biogas digesters

- frequently input and output: 20kg fresh materials input per day
- Before winter some precaution should be done to make sure the digester can work normally in winter.
- Safe use of biogas: keep flammable liquids away from gas appliances, prohibit fire test in transfer pipe, turn off the switch when not using the biogas.....
- Regular check of pipes, joints, switches, cover of entrance and exit pipe
- Regular check of the water column pressure
- Gas-tight control every year
- Attention of staff security during the inspection and maintenance under the digester

Treatment in winter

- Insulating by covering plastic layer.
- Insulating by material stack.
- Annular ditch: build a ditch around the digester, in which will be filled with straw.
- Pouring of hot water > 20° C by input and output process.
- New digester may not begin to operate in winter.
- Solar module: the general method for heat preservation in the biogas digesters.

Ecological Homeland Systems

"Four-in-one" Biogas Model In Northern China (317,800 households)

- Normal household biogas digester 6m³: ➤ 1400 RMB (140€)
- Four in one system:
- Cost for 8 m³ biogas digester and 15m² pigpen: about 3000 RMB (300€)
- > Cost for 500 m² greenhouse is 8000 RMB (800 \in)
- ➤ Total: 11000 RMB (1100€)

Job creation for local people

Health improvement—disease reduction due to utilization of clean energy and use of end products as land fertilizer

Lifestyle improvement

Economy benefit --- income increase

 Energy saving Farm development Various use of end product 	Model	Pure benefit yearly (unit: RMB)
	Household biogas	600
	Northern "four-in-one"	3000
Fertilizing with digestion liquids Silkworm keeping with biogas	Southern	2000
Plant fruit trees with digestion residues	"pig-biogas-fruit"	
		,

Environment and ecology benefit

Protecting forest and fossil energy substitution

- > The soil can be improved
- > Avoiding the pollution from organic wastes
- ➤ CO₂ and CH₄ reduction

Actual Situation:

- 1991: Greenhouse gas reduction 2.4 million ton
- 2005: Greenhouse gas reduction 14.4 million ton
- 15 years: total 88 million ton greenhouse gas have been reduced

Future Situation:

- 2010: Biogas production 16 billion m³ Greenhouse gas reduction 29.8 million ton
- 2020: Biogas production 40 billion m³ Greenhouse gas reduction 72.8 million ton

Thank you very much !

