

A FIT foi elaborada com informações básicas sobre a substância química e os efeitos à saúde humana na exposição ambiental. Vários fatores influenciam os possíveis danos à saúde e a gravidade dos efeitos, como a via, dose e duração da exposição, a presença de outras substâncias e as características do indivíduo.

Chumbo e seus compostos

Símbolo: Pb

Nº CAS: 7439-92-1 (chumbo metálico)

Sinônimos: Metal de pigmento, lasca de chumbo

Descrição e usos

O chumbo é um metal cinza-azulado encontrado em pequenas quantidades na crosta terrestre, geralmente associado a minérios, principalmente aos que contêm zinco. O sulfeto de chumbo (galena) é a mais importante fonte primária de chumbo e a principal fonte comercial. O Pb pode ser utilizado na forma de metal, puro ou ligado a outros metais, ou como compostos químicos, principalmente na forma de óxidos. O chumbo metálico é empregado em indústrias químicas e de construção, como ingrediente em soldas, lâminas de proteção contra raios X, material de revestimento na indústria automotiva, revestimento de cabos e está presente em várias ligas. Os óxidos de chumbo são usados em placas de baterias elétricas e acumuladores, vitrificados, esmaltes, vidros e componentes para borracha. Os sais de chumbo formam a base de tintas e pigmentos. Cerca de 40% do chumbo é usado como metal, 25% em ligas e 35% em compostos químicos.

Comportamento no ambiente

O chumbo (Pb) é liberado ao ambiente por atividade antropogênica, principalmente emissão de fundições e fábricas de baterias. É encontrado na atmosfera na forma particulada e as partículas são eliminadas com relativa rapidez por deposição seca e úmida, porém partículas pequenas podem ser transportadas a longas distâncias. Estudos mostram declínio nos níveis de chumbo no ar após a proibição do uso de chumbo tetraetila como aditivo da gasolina em vários países, incluindo o Brasil. A concentração de Pb em solo geralmente é baixa, porém maior nas camadas superficiais devido a precipitação atmosférica. A contaminação da água ocorre principalmente por efluentes industriais, sobretudo de siderúrgicas. O Pb pode estar presente na água de torneira como resultado de sua dissolução a partir de fontes naturais, principalmente por tubulações, soldas, acessórios e conexões contendo chumbo. A quantidade de Pb dissolvido a partir de encanamentos depende de vários fatores, como presença de cloro e oxigênio dissolvido, pH, temperatura, dureza da água, tempo de permanência da água na tubulação.

Exposição humana e efeitos na saúde

As principais vias de exposição da população geral ao chumbo são oral e inalatória. Os compostos orgânicos de chumbo, como chumbo tetraetila e tetrametila, se comportam como gases no trato respiratório e são mais absorvidos que as partículas de chumbo inorgânico, sendo absorvidos também através da pele. O metal está presente em cigarros em concentrações entre 2,5 e 12,2 µg/cigarro, das quais aproximadamente 2-6% podem ser inaladas pelo fumante. Outras fontes de exposição ao chumbo são cosméticos, tinturas de cabelo, remédios caseiros, soldas, cerâmicas esmaltadas, vidros de cristal com chumbo, bijuterias, pesos de pesca chumbados e armas de fogo e munições.

Mais de 80% do chumbo que ingressa diariamente no organismo é oriundo da ingestão de alimentos, sujeiras e poeiras contendo o metal. Para crianças o hábito de levar a mão a boca ou objetos cobertos com poeira de chumbo, e de comer partículas contendo chumbo, como lascas de tintas a base de chumbo, pode ser fonte de exposição. Como a tinta com chumbo é uma fonte contínua de exposição em muitos países, a Organização Mundial da Saúde (OMS) se uniu ao Programa das Nações Unidas para o Meio Ambiente para formar a Aliança Global para Eliminar a Tinta com Chumbo. Essa iniciativa visa evitar a exposição de crianças a tintas contendo chumbo e minimizar a exposição de pintores e de outros usuários a esse produto. O propósito é reduzir progressivamente a produção e a venda de tintas que contêm chumbo e, finalmente, eliminar os riscos de contaminação por esse tipo de metal. No Brasil, em 2008, foi aprovada a Lei nº 11762 que fixa o limite máximo de chumbo em tintas mobiliárias e de uso infantil e escolar, vernizes e materiais similares.

Ao ingressar no organismo, o chumbo é distribuído para órgãos como cérebro, rins, fígado e ossos, podendo causar danos nos sistemas neurológico, hematológico, gastrintestinal, cardiovascular, reprodutor e renal. Efeitos em longo prazo observados em adultos foram aumento da pressão sanguínea, danos renais além de efeitos neurológicos. A exposição de mulheres grávidas a altas concentrações de chumbo pode causar aborto espontâneo, parto de natimorto, nascimento prematuro e baixo peso ao nascer.

Há consenso entre as agências internacionais como a OMS, a Agência de Proteção Ambiental dos Estados Unidos (U.S.EPA) e a Agência Ambiental da Alemanha (UBA) que não há nível seguro de exposição ao chumbo, especialmente para crianças. O chumbo pode causar graves consequências na saúde das crianças e o aumento da exposição ao metal, aumenta a extensão e a gravidade dos sintomas e dos efeitos. Em concentrações acima de 10 μg/dL de sangue, o chumbo pode causar anemia, alterações renais, cólicas e danos no metabolismo da vitamina D, enquanto que em exposições a níveis mais baixos, os sintomas não são tão óbvios, mas mesmo em concentrações baixas de chumbo no sangue como 5 μg/dL, que já foi considerado como "nível seguro" no passado, podem resultar em danos neurológicos e alterações de comportamento irreversíveis como a diminuição do quociente de inteligência, diminuição da atenção, aumento de comportamento antissocial e problemas de aprendizagem.

A Agência Internacional de Pesquisa em Câncer (IARC) classifica os compostos inorgânicos de chumbo como prováveis cancerígenos para o ser humano (Grupo 2A), com base em estudos com animais que apresentaram tumores renais quando expostos a altas concentrações desses compostos na dieta. O chumbo é classificado no Grupo 2B — possível cancerígeno e os compostos orgânicos de chumbo no Grupo 3 - não classificáveis quanto a carcinogenicidade. A classificação no Grupo 3 comumente é usada para agentes para os quais a evidência de câncer é inadequada em humanos e inadequada ou limitada em animais de experimentação.

Padrões e valores orientadores

Meio Concentração Comentário Referência ¹			
Ar	0,5 μg/m ³ *	Padrão de Qualidade do Ar adotado no Estado de São Paulo - MAA	Decreto Estadual nº 59113 de 23/04/2013
Solo	72 mg/kg** 180 mg/kg** 300 mg/kg** 900 mg/kg**	Valor de Prevenção VI cenário agrícola-APMax VI cenário residencial VI cenário industrial	CONAMA 420/2009
Solo	72 mg/kg** 150 mg/kg** 240 mg/kg** 4400 mg/kg** 17 mg/kg**	Valor de Prevenção VI cenário agrícola VI cenário residencial VI cenário industrial VRQ	Valores orientadores para solo e água subterrânea no Estado de São Paulo- CETESB- DD 125/2021/E
Água potável	0,01 mg/L	VMP (Padrão de potabilidade)	Portaria GM/MS 888/2021
Água subterrânea	10 μg/L 100 μg/L 5000 μg/L 50 μg/L	VMP (consumo humano) VMP (dessedentação de animais) VMP (irrigação) VMP (recreação)	CONAMA 396/2008
Água subterrânea	10 μg/L	VI	Valores orientadores para solo e água subterrânea no Estado de São Paulo- CETESB- DD 125/2021/E
Águas doces ²	0,01 mg/L 0,033 mg/L	VM (classes 1 e 2) VM (classe 3)	CONAMA 357/2005
Águas salinas ²	0,01 mg/L 0,21 mg/L	VM (classe 1) VM (classe 2)	CONAMA 357/2005
Águas salobras ²	0,01 mg/L 0,21 mg/L	VM (classe 1) VM (classe 2)	CONAMA 357/2005
Efluentes ²	0,5 mg/L	VM (padrão de lançamento)	CONAMA 430/2011

¹As regulamentações podem ter alterações: Resolução CONAMA 420/2009, alterada pela Resolução CONAMA nº 460/2013; Resolução CONAMA nº 357, alterada pelas Resoluções nº 370, de 2006, nº 397, de 2008, nº 410, de 2009 e nº 430, de 2011 e complementada pela Resolução nº 393, de 2007; ²Chumbo total; MAA = média aritmética anual; *A ser monitorado apenas em áreas específicas, a critério da CETESB; **Peso seco; VI = Valor de Investigação (CONAMA)/ Valor de intervenção (CETESB); APMax = Área de Proteção Máxima; VRQ = Valor de Referência de Qualidade); VMP = Valor Máximo Permitido; VM = Valor Máximo.

Referências/Sites relacionados

AZEVEDO, F.A.; CHASIM, A.A.M. **Metais: Gerenciamento da toxicidade**. São Paulo: Atheneu Editora/InterTox, 2003. 554p.

LEVIN, R. *et al.* Lead exposures in U.S. children, 2008: implications for prevention. **Environmental Health Perspectives**, v. 16, n. 10, 2008.

OGA, S.; CAMARGO, M.M.A; BATISTUZZO, J.A.O. (eds). **Fundamentos de Toxicologia**. 5ª edição. Rio de Janeiro: Atheneu, 2021. 848p.

WILHELM, M. *et al.* Reassessment of critical lead effects by the German Human Biomonitoring Commission results in suspension of the human biomonitoring values (HBM I and HBM II) for lead in blood of children and adults. **Int J Hyg Environ Health.** v. 213, n. 4, p. 265-9, 2010.

http://www.iarc.fr/

http://www.epa.gov/

http://www.who.int/en/

http://www.atsdr.cdc.gov/

http://www.anvisa.gov.br/

http://www.mma.gov.br/conama/

http://www.cetesb.sp.gov.br/

https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562

Divisão de Toxicologia Humana e Saúde Ambiental