Environmental Impact Statements, Air Permitting, and Air Compliance

Patrick Foley
United States EPA
September 21, 2012
CETESB Conference

Environmental Impact Statements

- Required by the National Environmental Protection Act of 1970
- Consider environmental impacts when a Federal Agency evaluated options in making a decision in how to implement a project
- Required for any project involving a Federal Agency decision
 - Projects involving federal funding may also be required to do an EIS
- Federal Agency making the decision is responsible for developing EIS
 - Department of Energy for a Nuclear Power Plant
 - Department of Agriculture for opening up federal lands to cattle grazing
 - Department of Transportation for building a highway

Environmental Impact Statements

- Other Federal Agencies can be stakeholders who comment on the EIS if it involves an issue overseen by the Federal Agencies
 - Fish and Wildlife might comment on an EIS for a highway that was developed by the Department of Transportation
 - Memorandums of Understanding are developed between agencies to guide acceptable approaches to minimize disagreements between agencies

Environmental Impact Statements

- Council for Environmental Quality oversees the interaction of federal agencies
- CEQ mediates disagreements between federal agencies
- CEQ reports to the White House
- Decisions on significant EIS decisions can be made at the Presidential level
 - Disposal of nuclear waste from many states in one state
 - Trans-continental oil pipelines

Air Permitting

- New Source Review
 - Minor New Source Review
 - Major New Source Review
 - PSD in Attainment Areas
 - Major Non-attainment NSR in Non-attainment Areas
- Title V Operating Permits
- Nearly all permitting is implemented at the state level

Minor New Source Review

- Minor NSR is required for any physical change that can affect emissions (with many exemptions for small projects)
- Minor NSR programs are for small (i.e. not major) new sources or for small changes at major sources
- EPA requirement is for a state to have a minor NSR program but the elements of the minor permit program are not dictated by the EPA
- Some states will require a control technology review even for minor NSR permits
- Minor NSR acts as a screening mechanism to ensure that a project is truly minor

Major New Source Review

- Applies to Major Sources of criteria pollutants (SO2, NOx, CO, VOC, PM, PM-10, PM-2.5 etc.)
 - Any sources that emit more than 250 tons per year of any criteria pollutant
 - Sources on a list of specific industrial categories (petroleum refinery, pulp mill, electric generating units, etc.) that emit more than 100 tons per year

Major New Source Review

- Construction of a new major source can trigger Major New Source Review
- Modification of an existing major source can trigger Major New Source Review if significant
 - For SO2, NOx, and VOC, greater than 40 tons per year increase in emissions is significant
 - For PM, greater than 25 tons per year increase in emissions is significant
 - Lower significance thresholds is area is nonattainement

Major New Source Review

- Permit Requirements
 - Control Technology Review
 - Best Available Control Technology review for attainment pollutants (considers costs of control)
 - Lowest Achievable Emission Rate for non-attainment pollutants (does not consider costs of control)
 - Air quality impact analysis to ensure continued attainment
 - Emission offsets for non-attainment pollutant increases

Title V Operating Permits

- Required for all existing and new Major Sources
- Intended to indentify and list all federally enforceable requirements from regulations and minor and major permits
- Not intended to be used to create new requirements (except gap-filling of some missing monitoring and record-keeping requirements)

Questions?

Obtaining Information to Assess Compliance with Permits and Permit Rules

- File Review
- Facility Inspection
- Information Requests

File Review at EPA and State Offices

- Permit Applications and Correspondence
- Engineering Evaluations
- BACT Analyses
- Minor and Major NSR Permits
- Emission Inventories
- Inspection Reports
- With the internet, much of this can be now be done remotely

Facility Inspection

- Interviews
- Physical evidence
- Records

Different Levels of Inspections

- States are primarily responsible for inspections
- Many state inspector inspections last a few hours at a major stationary source
- USEPA inspections at a major stationary source will typically take one day sometimes two weeks
- What is described below is an inspection method utilized by USEPA inspectors to identify violations of major NSR permitting rules

Facility Inspection: Interviews

- Talk to Engineer responsible for process
 - detailed description of process
 - reference process flow diagrams
 - -changes in operations or equipment
 - reference Authorizations For Expenditure and engineering studies

Talk to Operators during plant walkthrough

Facility Inspection: Physical Evidence

- Physical signs of new construction
- Changes in control equipment or technology
- Photographs (Google Maps)
- Samples and monitoring

Facility Inspection: Facility Records

- Records that indicate modifications
 - Authorizations for Expenditure
 - Engineering Studies
 - Turnaround Reports
 - Capital Forecasts and other planning documents

Facility Inspection: Facility Records

- Production records
- Records of raw materials usage/supplier
- Records of process parameters
- Calculation of actual emissions
- Results of stack tests and test methods
- Continuous Emissions Monitoring System Data

Facility Inspection: Physical Evidence

- Physical signs of new construction
- Changes in control equipment or technology
- Photographs (Google Maps)
- Samples and monitoring

Information Requests: Capacity Increase Evidence

- Documents
 - Authorizations for Expenditure
 - Engineering Studies
 - Turnaround Reports
- Data over time
 - Feed/Production plot it
 - Fuel Usage plot it

Information Requests: Emissions Calculations

- Feed/Production/Fuel usage over time
- CEMS data over time
- All Stack Tests for Unit in Question
- Annual Emission Statements
- Calculations of projected actual emissions

Information Requests: Permit History

- All permit applications and supporting correspondence
- Engineering or permit review memoranda
- All permits
 - Minor NSR
 - Major NSR
 - Title V

Questions?

Case Study: Flare Efficiency Investigations

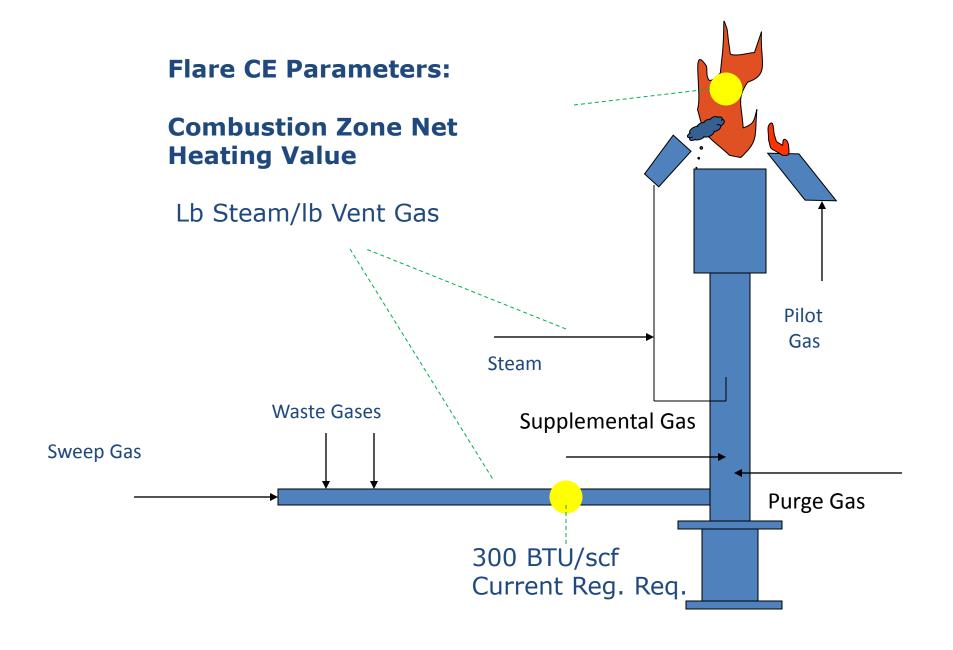
- Using too much steam to aerate a flare flame will degrade the combustion efficiency of the flare resulting in large emissions of VOCs
- EPA jointly investigated the issue with Marathon Petroleum Refining
- Currently EPA is engaged in a significant enforcement initiative to correct the problem

The Issues

Over-steamed Low combustion efficiency

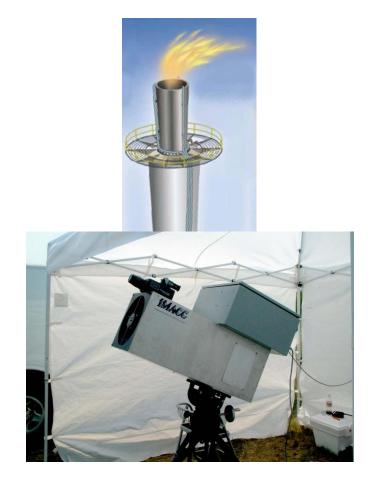
History of EPA's Concerns with Flare Efficiency

Inspections of Refineries and Chemical Plants

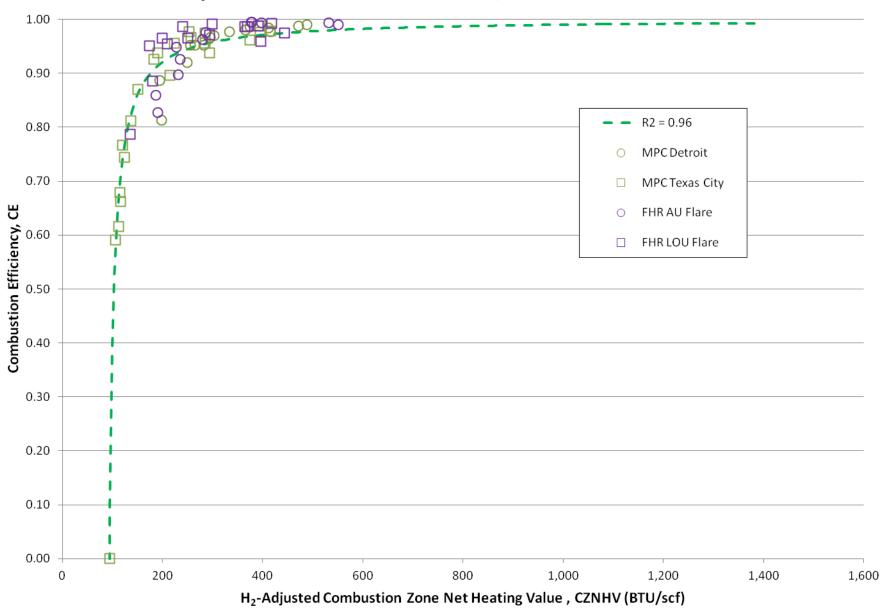

- Problems Exist
 - Too much steam
 - Too much air
 - Low BTU value in combustion zone
- Hundreds and thousands
 of tons excess emissions per flare
 per year

Insufficient Steam/Air: Smoke due to poor mixing-Not enough oxygen

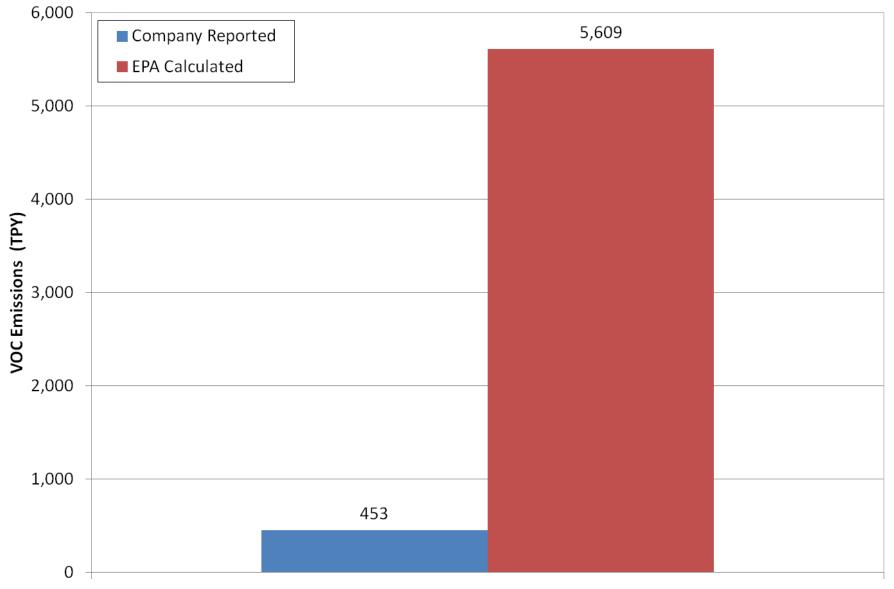
Good Combustion: Turbulent, Hot Flame Excess Steam/Air: Dilution and Cooling of Flame


Draft 27

Draft 28

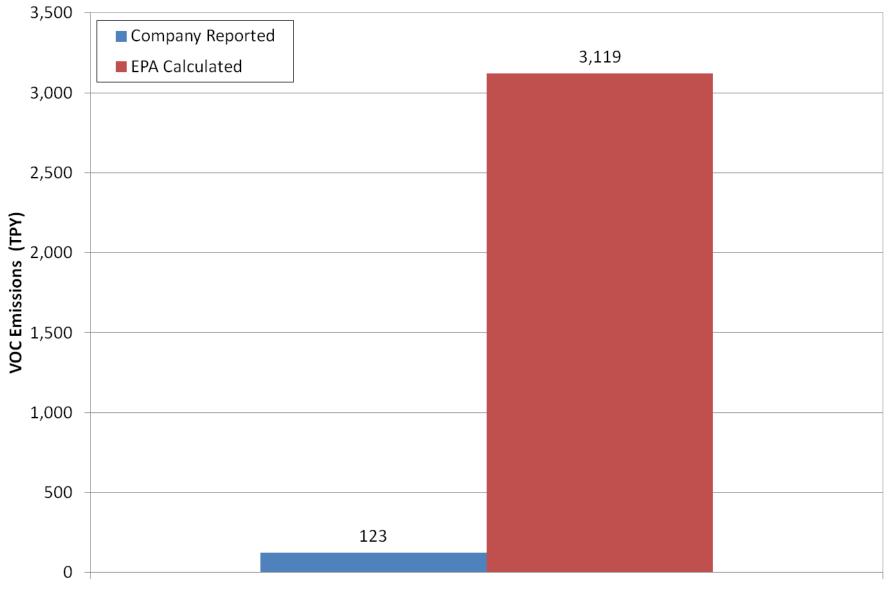

Remote Quantification of Combustion Efficiency - Passive Fourier Transform Infrared (PFTIR) Spectroscopy

- Hot gases from flares radiate spectra that are unique to each compound
- A PFTIR is a spectrometer that can "see" the gas spectra from the ground
- Can estimate flare combustion efficiency remotely from ground level with a high degree of accuracy



Draft 29

Equation 3: MPC Baseload Runs; FHR Baseload Runs



Marathon Petroleum Company Baseline VOC Emissions from Flares

2007 – 2008 Baseline Average

BP Whiting Refinery Baseline VOC Emissions from Flares

2007 – 2008 Baseline Average

Marathon and BP Injunctive Relief – Emissions Reductions

- For Marathon, flare efficiency and caps will result in:
 - VOC emission reductions greater than 5,000 TPY*;
 and
 - HAP emission reductions greater than 135 TPY*.
- For BP, flare efficiency, flare gas recovery and caps will result in:
 - VOC emission reductions greater than 3090 TPY*;
 - HAP emission reductions greater than 83 TPY*.

^{*} All values estimated. Volume and composition of waste gas not monitored previously.

Potential U.S. Refinery Flare VOC Emissions if Marathon and BP Flare Gas Volume, Composition and CE are Typical

Sensitivity Analysis	Crude Capacity (bpd)	Total VOC Emissions from Flares (ton/year)
U.S. Full Capacity With CE Problems	17,787,714	98,000
50% U.S. Capacity With CE Problems	8,893,857	49,000
25% U.S. Capacity With CE Problems	4,446,929	24,000
10% U.S. Capacity With CE Problems	1,778,771	10,000

^{1.} U.S. crude capacity as of January 1, 2012, per Oil & Gas Journal.

99% of these emissions can be controlled through a flare efficiency program. HAP content of flare gas is highly variable, but can typically range from 0.5 to 3.0 %.

Questions?

Contact

Patrick Foley, Senior Environmental Engineer USEPA - Air Enforcement Division

Email: foley.patrick@epa.gov

Phone: 202-564-7978

